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Abstract: In this paper we consider the problem of estimating the probability of misclas-
sification when consensus is achieved between two binary classifiers that are trained on the
same training set. Firstly, it is shown that, under consensus, the probability of misclassification
compares favourably with that of the best of the two classifiers. Secondly, we provide accurate,
and yet simple to compute, estimates of the probability of consensus and the probability of
misclassification under consensus. This paper provides a theoretical basis for these estimates
and demonstrates their accuracy by simulation results on a synthetic data set and on a medical
data set for breast cancer cell classification.
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1. INTRODUCTION

1.1 Problem description and main contributions

In this paper we consider the situation where two binary
classifiers are constructed using the same training set. We
are interested in the probability of misclassification when
the two classifiers agree (consensus). The motivation for
this study is the empirical evidence that, under consensus,
a higher probability of correct classification is achieved.

The main contributions of this paper consists of two novel
results on this probability of misclassification given con-
sensus. Both results are valid irrespective of the distribu-
tion by which samples are drawn.

Firstly, we present a novel theorem (Theorem 2) that
compares the probability of misclassification under con-
sensus with the probability of misclassification of the best
classifier. From this theorem, two corollaries are derived
that rigorously quantify the probability of misclassification
for the case at hand on the basis of certain empirical
indicators.

Secondly, for a certain family of classification algorithms,
we present simple-to-compute estimators of the probability
that the two classifiers are both wrong and the probability
that they are in consensus. These estimators are also tested
on numerical simulations.

? Roy Cobbenhagen and Maurice Heemels were supported by “Toe-
slag voor Topconsortia voor Kennis en Innovatie” (TKI HTSM) from
the Ministry of Economic Affairs, the Netherlands.
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1.2 Previous work

Research on the subject of combining classifiers is vast: an
overview can be found in, e.g., Kittler et al. (1998); Kittler
(1998); Džeroski and Ženko (2004). Applications can be
found in Petrakos et al. (2001) and, in Kuncheva et al.
(2000), statistical tests on multiple dependent classifiers
are described. Our approach is radically different from
these works as we do not require additional statistical
tests, and our estimators can be computed from struc-
tural properties (i.e., the number of “support points”).
Our investigation narrows the gap between these multi-
classifier studies in the machine learning community and
the scenario approach (Calafiore and Campi (2006)) from
the optimisation and control community following up the
previous contributions Campi (2010); Margellos et al.
(2015); Manganini et al. (2015); Baronio et al. (2017).

1.3 Preliminaries and notation

Let y : Rn → {0, 1} be a random mapping from a vector of
n features x to a label y ∈ {0, 1}. Hence, to a given x the
mapping assigns a probability that y = 0 and that y = 1.
The objective of supervised classification is to construct
a function ŷ : Rn → {0, 1} of x such that ŷ(x) = y(x)
with high probability, where ŷ is constructed using a
collection ofN , previously recorded, data points, called the
“training set”. We call ŷ a binary classifier. In this paper
we denote the training set by τN := {(x1, y1), ..., (xN , yN )}
and assume that the data points (xi, yi) in the training
set τN are independent and identically distributed (i.i.d.)
according to a probability measure P over ∆ = Rn×{0, 1}.
It is assumed that the marginal probability of x over
Rn admits density. No other knowledge regarding P is
assumed.



When given a new feature vector x ∈ Rn, the classifier
provides a prediction ŷ(x) of the corresponding label. The
probability of misclassification of a classifier ŷ is

V = P{ŷ(x) 6= y(x)} . 1

Let ŷA : Rn → {0, 1} and ŷB : Rn → {0, 1} denote two
classifiers called A and B, respectively. It is assumed that
these classifiers are trained on the same training set of
size N . To improve readability, we will use “consensus”
as a shorthand for “ŷA(x) = ŷB(x)” and “A wrong”
(“B wrong”) for “ŷA(x) 6= y(x)” (“ŷB(x) 6= y(x)”),
and similarly for the “right” case. We use the following
notations throughout the whole paper

VA = P{A wrong}
VB = P{B wrong}

VA∩B = P{A wrong ∧B wrong}
VA∪B = P{A wrong ∨B wrong}

α = P{consensus}
= P{(A wrong ∧B wrong) ∨ (A right ∧B right)}

Vag =
VA∩B
α

= P{A wrong ∧B wrong | consensus}

Vbest = min{VA, VB}
Vworst = max{VA, VB}.

1.4 Structure of the paper

The remainder of the paper is structured as follows. Sec-
tion 2 presents a novel result that compares the proba-
bility of misclassification conditioned on agreement (i.e.,
Vag) with the probability of misclassification of the best
classifier. Section 3 presents a new estimator for Vag and
some ancillary theoretical results. A demonstration by
simulation of the accuracy of the estimator is presented
in Section 4. The paper ends with conclusions in Section
5.

2. MOTIVATION: GETTING CLOSE TO THE BEST
PERFORMANCE

The main motivation to investigate Vag is the experimental
evidence that, in general, Vag is much smaller than VA
and VB . This evidence is in part supported by Theorem
2, which shows that, even though Vag can be worse than
Vbest, it is still relatively close to the performance of the
best classifier.

2.1 Probability of consensus

Before we discuss the main result (Theorem 2), we estab-
lish the following lemma on the probability that the two
classifiers agree (i.e., they are in consensus).

Lemma 1. (Probability of consensus).

α = 1− VA∪B + VA∩B = 1− VA − VB + 2VA∩B
= 1 + VA + VB − 2VA∪B .

1 Note that V is a random variable on ∆N , and V can also be
interpreted as a conditional probability:

V = PN+1{ŷ(x) 6= y(x) | τN} ,
where

PN+1 = P× · · · × P︸ ︷︷ ︸
N+1 times

is the product probability since the samples are i.i.d.

Proof. Using the definition of the probability of consensus,
we obtain

α = P{consensus}
= P{(A right ∧B right) ∨ (A wrong ∧B wrong)}
= P{A right ∧B right}+ P{A wrong ∧B wrong}
=1−P{A wrong ∨B wrong}+P{A wrong ∧B wrong}
= 1− VA∪B + VA∩B .

By the inclusion-exclusion principle,

VA∪B = VA + VB − VA∩B , (1)

which can be substituted to obtain the latter two equalities
of the claim. �

2.2 ‘Stay with the best’ theorem

Using the result of Lemma 1, we can prove the following
theorem.

Theorem 2. If VA + VB < 1, then

Vag ≤
Vbest

1 + Vbest − Vworst
. (2)

Proof. Lemma 1 implies that

Vag =
VA∩B

1− VA − VB + 2VA∩B
. (3)

Combining (3) with the assumption VA + VB < 1, we get
Vag <

1
2 . Hence, it holds true that

∂Vag
∂VA∩B

=
1

α
(1− 2Vag) > 0, (4)

that is, Vag is an increasing function of VA∩B so that we can
upper bound Vag by substituting the maximum value that
VA∩B can take. Since VA∩B is the probability that both A
and B are wrong, it is upper bounded by the minimum of
VA and VB . Therefore, it holds that

Vag ≤
min{VA, VB}

1− VA − VB + 2 min{VA, VB}

=
min{VA, VB}

1 + min{VA, VB} −max{VA, VB}
. �

Remark 3. Inequality (2) becomes an equality, namely
when the worst classifier is wrong every time the best
classifier is wrong (VA∩B = Vbest in (3)).

Remark 4. The condition VA+VB < 1 cannot be removed;
however, it is very mild because any practically useful
classifier classifies with a probability of error smaller than
50%.

The interpretation of Theorem 2 is that one achieves a
probability of misclassification close to that of the clas-
sifier that performs better. For example, suppose that
Vbest = 0.01 and the other classifier is ten times worse, i.e.,
Vworst = 0.10. Then, according to Theorem 2, Vag ≤ 0.011,
i.e., Vag is much closer to the probability of misclassifica-
tion of the best classifier than to that of the worst classifier.
This is achieved by abstaining from classifying in case of
disagreement, which normally occurs in feature regions
that are difficult to classify (e.g., regions where y takes
on value 0 or 1 with an evenly split probability).

2.3 Data-dependent applications of Theorem 2

In practice, the true values of VA and VB are unknown.
However, (upper) bounds on the probability of misclassifi-
cation are sometimes available in the spirit of the so-called



Probably-Approximately-Correct (PAC) learning. In no-
table situations, these bounds can be obtained from the
training set, i.e., without resorting to any extra validation
or testing data, see e.g., Graepel et al. (2005); Carè et al.
(2018); Campi and Garatti (2018); Carè et al. (2019). We
formalize the eventuality that such data-dependent bounds
are available by the following assumption.

Assumption 5. There exist data-dependent bounds such
that, for each of the classifiers j ∈ {A,B}, it holds that

PN{Vj ≤ εj(τN )} ≥ 1− βj ,
where εj(τN ) ∈ (0, 1] denotes the upper bound on the
probability of misclassification and 1 − βj ∈ (0, 1) is the
confidence with which the upper bound holds. In cases of
interest, βj is a very small value.

We can use these data-dependent bounds to leverage
Theorem 2. We first provide a deterministic result in
Corollary 6 and then the probabilistic, data-dependent
counterpart in Corollary 7.

Corollary 6. Let εA, εB ≥ 0 such that εA + εB < 1 and
define εmax = max{εA, εB}, εmin = min{εA, εB}. Under
the condition that VA ≤ εA and VB ≤ εB , it holds that

(i) Vag ≤ Vbest
1

1− εmax
,

(ii) Vag ≤
εmin

1 + εmin − εmax
.

Proof. We have Vworst ≤ εmax by assumption and Vbest ≥
0 is trivially true. Using these two inequalities to bound
from below the denominator of (2) yields the first inequal-
ity.

In order to prove the second inequality, we again use
Vworst ≤ εmax in (2) and observe that Vbest/(Vbest + 1 −
εmax) is an increasing function of Vbest since εmax < 1.
In order to bound from above this expression we therefore
substitute the largest possible value of Vbest, which is εmin.
�

The following Corollary 7 justifies the usage of the data-
dependent bounds εA(τN ), εB(τN ) to draw conclusions
about Vag by showing that it is a rare event (of probability
at most βA + βB) that one observes that the condition
εA(τN ) + εB(τN ) < 1 is satisfied and yet the conclusions
of Corollary 6 are not correct.

Corollary 7. Let εA(τN ), εB(τN ) be the bounds in As-
sumption 5. Define εmax(τN ) = max{εA(τN ), εB(τN )},
εmin(τN ) = min{εA(τN ), εB(τN )} and introduce the (bad)
event B ={
Vag > Vbest

1
1−εmax(τN ) ∨ Vag >

εmin(τN )
1+εmin(τN )−εmax(τN )

}
.

Then, it holds that

PN{εA(τN ) + εB(τN ) < 1 ∧ B} ≤ βA + βB .

Proof. By Corollary 6, it holds that, for any τN , εA(τN )+
εA(τN ) < 1 ∧ B =⇒ VA > εA(τN ) ∨ VB > εB(τN ). Thus,

PN{εA(τN ) + εB(τN ) < 1 ∧ B}
≤ PN{VA > εA(τN )}+ PN{VB > εB(τN )}
≤ βA + βB . �

Theorem 2 and Corollaries 6 and 7 offer worst-case guar-
antees that hold true in full generality. On the other
hand, simulation evidence shows that in many situations

conditioning on agreement will improve the probability
of misclassification well beyond worst case. In the next
section, we venture beyond the results in Corollaries 6 and
7 and try to lay the foundations of a new theory for an
accurate estimate of the actual probability of misclassifi-
cation under consensus. Our study here is preliminary and
is meant to offer new avenues for further investigations.

3. PRACTICAL ESTIMATORS FOR Vag

In this section, we assume that the classifiers A and B are
constructed by means of two algorithms that fit the theo-
retical framework of Campi (2010); Carè et al. (2018). As a
consequence, the obtained classifiers can be characterized
by their “support points” (the notion of “support point” is
analogue to that of “support constraint” in the theory of
the scenario approach, see e.g., Campi and Garatti (2008,
2018)), defined as follows.

Definition 8. (Support point, support set). A data point
in the training set is a support point for a classifier if and
only if the removal of that data point from the training
set followed by retraining yields a different classifier. The
support set of a classifier is the set of its support points.

The following fact of the theory in Campi (2010); Carè
et al. (2018) is crucial in what follows.

Fact 9. A data point (xi, yi) ∈ τN is a support point if and
only if the classifier trained on τN \ {(xi, yi)} misclassifies
(xi, yi).

2

We denote by SNA (SNB ) the support sets of classifier A
(B) trained on τN . For reasons that will be clear soon,
we have used the superscript N as a reminder of the
size of the traning set. We will also use the shorthands
kNA = |SNA |, kNB = |SNB |. It is a well-known fact that there
is a strong relation between the cardinality of the support
set and the probability of misclassification. In particular,
it holds that (see e.g. Calafiore (2009))

EN{VA} =
EN+1

{
kN+1
A

}
N + 1

(5)

(likewise for classifier B), where the expectation on the
left-hand side, with respect to τN , is taken on the
probability of misclassification VA discussed through-
out the paper, while the expectation on the right-hand
side is with respect to a larger training set τN+1 =
{(x1, y1), ..., (xN+1, yN+1)} ∈ ∆N+1 and is taken on the
number of support points of the classifier trained on τN+1.
This shows that kN+1

A /(N + 1) is a reasonable estimator
of VA. In the same spirit, we define

kN+1
A∪B = |SN+1

A ∪ SN+1
B |

and show that

EN{VA∪B} =
EN+1

{
kN+1
A∪B

}
N + 1

. (6)

Proof. Let A∗ and B∗ denote two classifiers trained on
the enlarged training set τN+1 and letAi andBi denote the
classifiers trained on the N data points in τN+1\{(xi, yi)}.
2 Recall that, in order for this fact to hold, the special initialization
point in the constructions of Campi (2010); Carè et al. (2018) must
not be counted as belonging to the training set.



Hence, in particular, AN+1 and BN+1 can be understood
as the classifiers A and B, trained on τN , that have been
discussed throughout the paper. For brevity, let us denote
by δi a data point (xi, yi). Fact 9 ensures that

1{δi s.p. for A∗} = 1{Ai wrong on δi}, (7)

where “s.p.” stands for “support point” and 1{·} is the
indicator function (likewise for B).

Every possible ordering of N + 1 data points is equally
likely to occur because of the i.i.d. assumption. This allows
us to state the following identity (for more information, see
a similar derivation in Calafiore (2009)):

N+1∑
i=1

∫
∆N+1

1{Ai or Bi wrong on δi}P(dδi)

PN (dδ1, ...,dδi−1,dδi+1, ...,dδN+1)

= (N + 1)

∫
∆N+1

1{AN+1 or BN+1 wrong on δN+1}
P(dδN+1)PN (dδ1, ...,dδN ) . (8)

It follows that

EN{VA∪B} = EN{P{A or B wrong on δN+1}}

=

∫
∆N

∫
∆

1{AN+1 or BN+1 wrong on δN+1}
P(dδN+1)PN (dδ1, ...,dδN )

=

∫
∆N+1

1{AN+1 or BN+1 wrong on δN+1}
PN+1(dδ1, ...,dδN+1)

[(8)] = 1
N+1

∫
∆N+1

(
N+1∑
i=1

1{Ai or Bi wrong on δi}

)
PN+1(dδ1, ...,dδN+1)

[(7)] = 1
N+1

∫
∆N+1

(
N+1∑
i=1

1{δi s.p. for A∗ and/or B∗}

)
PN+1(dδ1, ...,dδN+1)

= 1
N+1

∫
∆N+1

∣∣SN+1
A ∪ SN+1

B

∣∣PN+1(dδ1, ...,dδN+1)

=
EN+1

{
kN+1
A∪B

}
N + 1

.

�

We conclude that kN+1
A∪B/(N + 1) is a reasonable estimator

of VA∪B .

Taking expectation on both sides of (1), we obtain

EN{VA∩B} = EN{VA}+ EN{VB} − EN{VA∪B} . (9)

Defining

kN+1
A∩B = |SN+1

A ∩ SN+1
B |,

and noting that kN+1
A∩B = kN+1

A +kN+1
B −kN+1

A∪B , substitution
of the right-hand sides of (5) and (6) into the right-hand
side of (9) leads to the conclusion that

EN{VA∩B} =
EN+1

{
kN+1
A∩B

}
N + 1

, (10)

which shows that kN+1
A∩B/(N + 1) is a reasonable estimator

of VA∩B .

Finally, 1 − kN+1
A∪B
−kN+1

A∩B

N+1 is obtained as a reasonable esti-

mator of α by recalling that EN{α} = 1 + EN{VA} +
EN{VB} − 2EN{VA∪B} in view of Lemma 1.

The issue with the estimators obtained so far is that they
are based on the enlarged τN+1 and not on the available
τN . To fill this gap, we rely on a well-educated guess
(heuristic): the number of support points of a classifier
trained on τN is expected to be close to the number
of support points when an additional training point is
considered.

The reasoning behind this heuristic assumption is that,
when N is large and VA is reasonably low, an (N + 1)-
th data point is unlikely to be misclassified, so that the
number of support points is unlikely to change when the
training set is enlarged with this point. On the other
hand, if an (N + 1)-th data point is misclassified, then the
new number of support points could, at least in principle,
take on any value between 1 and N + 1. However, we
conjecture that, most of the times, this value will be close
to the previous one. In other terms, we conjecture that
kNj ≈ k

N+1
j for all j ∈ {A,B,A ∪B,A ∩B}.

We are now in the position to propose the following
estimators (of α, VA∩B and Vag, respectively):

α̂ = 1− kNA∪B − kNA∩B
N + 1

, (11a)

V̂A∩B =
kNA∩B
N + 1

, (11b)

V̂ag =
kNA∩B

N + 1 + kNA∩B − kNA∪B
, (11c)

where

kNA∪B = |SNA ∪ SNB |,
kNA∩B = |SNA ∩ SNB |.

3.1 Additional remarks

A remarkable fact is that the probability VA∪B actually
corresponds to the probability of misclassification of a
classifier that fits the framework of Campi (2010); Carè
et al. (2018). Such a classifier can be called the “union
classifier” and is defined as follows. If A and B agree,
the union classifier classifies according to the value of this
agreement. In the case where A and B disagree, one of
them must be right and the other must be wrong. In this
case, the union classifier outputs a ternary value and hence
it is deliberately wrong. The union classifier is therefore
right if both A and B are right, otherwise it is wrong, and
hence we can claim that the probability of misclassification
of the union classifier is VA∪B . The “union classifier” has
support set equal to SNA ∪ SNB .

Starting from relation (10), one could be tempted to define
the corresponding “intersection classifier”, in a similar
fashion as the “union classifier” above, and to study it
in the light of Campi (2010); Carè et al. (2018). However,
in general, the set of points SNA ∩ SNB is not a support
set of the “intersection classifier” according to the theory
of Campi (2010); Carè et al. (2018). This can be shown
by noting that the removal of a point in SNA \ SNB from
the training set followed by retraining yields a different
“intersection classifier”.



4. SIMULATION RESULTS

4.1 Synthetic data set

In the following simulations, the classifiers are Guaranteed
Error Machines (GEM), see Campi (2010); Carè et al.
(2018). Following Carè et al. (2018), the regions of the
GEM classifiers are restricted to (hyper)spheres as op-
posed to more general quadrics as in the original GEM
algorithm.

In this section, the following synthetic problem is con-
sidered. There are n = 2 features, x(1) ∈ [0, 1] and
x(2) ∈ [0, 1], mapped to a label y ∈ {0, 1} according to
the function

y(x) =

{
1, if x(2) ≥

(
x(1) − 1

2

)
cos
(

25x(1)
)

+ 1
2 ,

0, otherwise.
(12)

The marginal distribution of P with respect to x is the
uniform distribution over [0, 1]2.

In order to demonstrate the accuracy of the estimators, the
following simulation experiment was performed. In total,
100 data sets of size N = 1000 were generated and on
each data set two GEM classifiers were trained. Classifier
A always had (0.5, 1) as the starting point (with label “1”)
and classifier B always had (0.5, 0) as the starting point
(with label “0”). Figure 1 shows a training set and Figure
2 shows the two GEM classifiers trained on it.
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Fig. 1. Sample training set of size N = 1000. Circles
indicate values with label “0” and crosses indicate
values with label “1”. The solid line indicates the
division according to the function (12).

The number of support points of each classifier and the
number of support points in common were computed
for each pair of classifiers for all 100 training sets. In
order to compute the “true” probability of agreement and
probability of both being wrong, a Monte Carlo simulation
of 2 ·105 samples was performed. Figure 3 shows the result
for the estimator V̂ag versus the Monte Carlo estimate.
It can be seen that these values are in good agreement.
Quantitatively, the mean difference between these two
values is 0.0020, the mean absolute difference is 0.0064
and the largest absolute deviation is 0.0211.
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Fig. 2. Two GEMs trained on the training set of Figure
1. The coloured regions are classified as “0” by the
classifiers, “1” otherwise. By a Monte Carlo simula-
tion of 2 · 105 samples it was determined that VA '
0.098, VB ' 0.10, VA∩B ' 0.052 and α ' 0.90, which
yields Vag ' 0.057.
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Fig. 3. The estimator V̂ag versus the Monte Carlo estimate
of Vag.

4.2 Medical data set

We applied the results developed in the paper to the well-
known diagnostic BreastW data set, obtained from Dua
and Graff (2017). This data set can be used to train a
classifier that predicts whether a particular breast tissue
cell nucleus corresponds to a malignant or benign cell.
The data set consists of 569 data points (357 benign, 212
malignant) with n = 30 features.

In this simulation example we construct two GEMs accord-
ing to the original GEM algorithm as described in Campi
(2010), which can construct quadrics. 3 We randomly se-
lected two data entries to be the starting point for each of
the two GEMs. These starting points were subsequently
removed from the training set. From the remaining 567
points we randomly selected N = 397 data points (ap-
proximately 70%) to train the GEMs. The remaining 170
points were used for validation.

We obtained two GEMs with kNA = 27, kNB = 17, kNA∩B =
6, kNA∪B = 38. The comparison between the validation and
the estimators from this paper is displayed in Table 1.

3 The complexity parameter of GEM was set so as to achieve
complete classification.



Table 1. Simulation results for the medical
data set.

Probability Fraction in validation Estimator

VA 0.0706 0.0678

VB 0.0529 0.0427

VA∩B 0.0176 0.0151

α 0.9118 0.9196

Vag 0.0194 0.0164

5. CONCLUSION AND FUTURE WORK

This paper established a worst case result showing that
the probability of being wrong under consensus cannot
be much worse than the probability of misclassification of
the best classifier. Subsequently, inspired by the theory of
the scenario approach, we proposed a practical estimator
for the actual probability that two classifiers agree and are
both wrong. The strength of the results were demonstrated
on a synthetic data set and on a real-life medical data set.

The results of this paper are offered as a preliminary to
future work. Firstly, it is interesting to study extensions
of these results to general multi-agent/multi-classifier set-
tings. In case of a large number of classifiers, unanimity
may occur only with a low probability. This leads to
the second direction of study: extension of the results to
majority voting and other multi-agent decision schemes.
Although a lot of research has been done on majority
voting, the results of this paper can provide probabilistic
guarantees and may shed a new light on multi-agent deci-
sion schemes. A third direction of future research is related
to the exploitation of the wait-and-judge techniques pre-
sented in Campi and Garatti (2018); Carè et al. (2019)
to the classification algorithms that we have considered
in Section 3. The wait-and-judge approach can be used
to improve the evaluation of the performance of classifiers
under consensus. Finally, in this paper we provided estima-
tors for certain key random quantities. We motivated their
usage by a theoretical analysis accompanied by a heuristic.
A fully rigorous analysis is currently ongoing research and
could also be relevant to the important topic of leave-one-
out stability (Evgeniou et al. (2004)).
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Carè, A., Garatti, S., and Campi, M.C. (2019). The
wait-and-judge scenario approach applied to antenna
array design. Comput. Manag. Sci. doi:10.1007/
s10287-019-00345-5.
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